Civil Engineering Model Question Papers For Undergraduate Program

The model question papers are suggestive blueprints. The primary aim of these question papers is to bring clarity about the process of connecting questions to performance indicators and hence to course outcomes. Further, these question papers demonstrate how bloom's taxonomy can be used to understand the quality

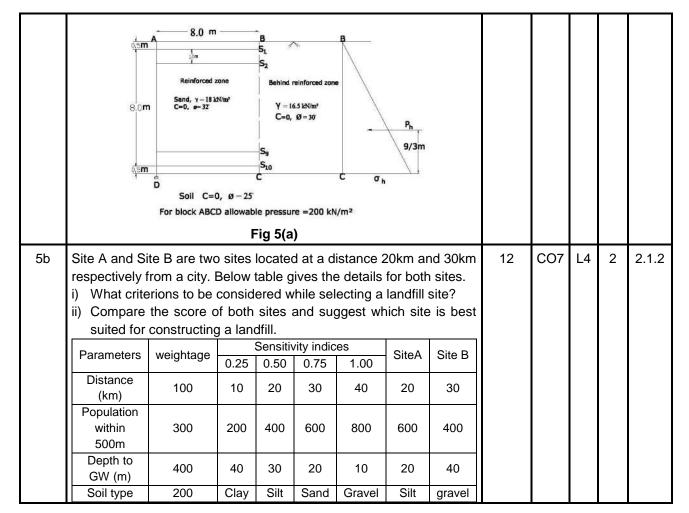
question papers is to bring clarity about the process of connecting questions to performance indicators and hence to course outcomes. Further, these question papers demonstrate how bloom's taxonomy can be used to understand the quality of question papers and their effectiveness in assessing higher order abilities. The structure of question papers, number of questions, choices given, time given for examination etc., can vary based on the practices of the University or college.

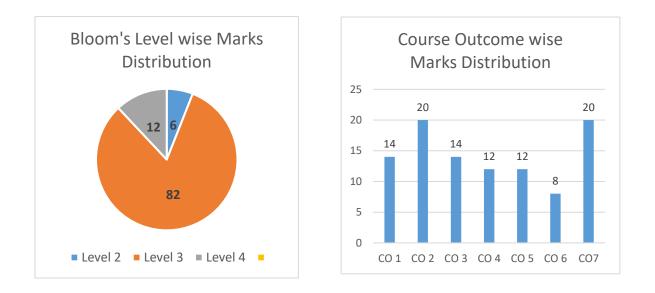
Table of Contents

Name of Course	Page No.
1. Advanced Geotechnical Engineering	CE1-CE3
2. Construction Project Management	CE4-CE6
3. Advanced Project Management	CE7-CE9
4. Design of RCC Structures	CE10-CE11
5. Environmental Engineering	CE12-CE14

Course Name: Advanced Geotechnical Engineering

Course Outcomes (CO):


At the end of the course the student should be able to:


- 1. Plan soil exploration program, interpret the results and prepare soil exploration report.
- 2. Compute active and passive earth pressure.
- 3. Carry out stability analysis of finite and infinite slopes with some field problem.
- 4. Compute safe bearing capacity of shallow foundations.
- 5. Design pile and pile group.
- 6. Carry out settlement analysis of footings.
- 7. Assess the potential of soil for the design of landfills and reinforced earth wall.

Model Question Paper Total Duration (H:M):3:00 Course :Advanced Geotechnical Engineering Maximum Marks :100

Q.No.	Questions	Marks	со	BL	PO	PI Code
1a	You are appointed as site engineer and have been tasked to carry out site investigations for an earth dam construction site. Describe the investigation procedure and discuss what information is required for the preparation and presentation of the report.	8	CO1	L3	1	1.3.1
1b	A standard penetration test was carried out at a site. The soil profile is given in figure 1(b) below with the penetration values. The average soil data are given for each layer. Compute the corrected values of N and plot showing the variation of observed and corrected values with depth.	6	C01	L3	4	1.3.1
1c	The unit weight of a soil of a 30° slope is 17.5kN/m ³ . The shear parameters c and ϕ for the soil are 10 kN/m ² and 20° respectively. Given that the height of the slope is 12 m and the stability number obtained from the charts for the given slope and angle of internal friction is 0.025, compute the factor of safety.	6	CO3	L2	1	1.3.1
2a	For the retaining wall shown in figure 2(a), draw the active earth pressure distribution diagram and obtain total active force on the wall.	8	CO2	L3	2	2.1.2

	Fig 2(a)					
2b	A retaining wall 4.5 m high with a vertical back supports a horizontal fill weighing 18.60 kN/m ³ and having ϕ = 32°, δ = 20°, and c = 0. Determine the total active thrust on the wall by Culmann's graphical method.	12	CO2	L3	1	1.3.1
3a	A canal having side slope 1:1 is proposed to be constructed in cohesive soils to a depth of 4.5m below the ground surface. The soil properties are a given below; $\phi_u=15^\circ$, $c_u=10$ kN/m ² . e=1.0 G=2.65. find the factor of safety with respect to cohesion against failure of bank slopes; i) When the canal is full of water and. ii) When there is sudden draw down of water in canal.	8	CO3	L3	2	2.1.2
3b	Determine the depth at which a circular footing 2m diameter be founded to provide a factor of safety of 3.0. If it has to carry a safe load of 1500 kN. The foundation soil has c=15 kN/m ² , ϕ =30° and unit weight of soil γ =18kN/m ³ .	7	CO4	L3	2	2.1.2
3с	A large scale bearing capacity test on a footing of size 1.05mX1.05m at a depth of 1.5m yielded an ultimate value of 141 kN. Unconfined compressive tests on the soft saturated clay yielded a strength of 0.03 N/mm ² . If the unit weight of the soil is 16 kN/m ³ , how much does the test value differ from that obtained using Terzaghi's bearing capacity equation?	5	CO4	L3	2	2.1.2
4a	Design a pile foundation system in 20 m thick soft clay with undrained cohesion of 60kPa, density of 18kN/m ³ and water content of 30%. The clay layer is underlined by hard rock. The pile foundation should carry a load of 6500 kN. Take liquid limit=60%, G=2.7.	12	CO5	L3	2	2.2.3
4b	A soil profile at a site consists of 4.0m of medium sand with dry unit weight of 17 kN/m ³ , underlain by a normally consolidated layer of 2.0m thick clay. The initial void ratio of clay is 1.0 its saturated unit weight is 20 kN/m ³ and its liquid limit is 50%. The ground water table is at the top of the clay layer. A square footing 2m x 2m is founded at a depth of 1.0 m below the GL at the site. The load on the footing is 1200 kN. Calculate the settlement of footing due to consolidation of the clay layer.	8	CO6	L3	2	2.1.2
5a	Check the reinforced earth wall shown in figure 5(a) for stability against a) sliding b) over turning and c) bearing failure. Although BC is a rough face, assume it to be smooth.	8	C07	L3	2	2.1.2

BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 –
 Evaluating, 6 - Creating)
 CO – Course Outcomes

PO – Program Outcomes; PI Code – Performance Indicator Code

Course Name: Construction Project Management


Course Outcomes (CO):

- 1. Determine the inter-relationships of construction drawings and specifications and their working in construction engineering and management.
- 2. Develop Work Breakdown Structure (WBS) for various types of buildings.
- 3. Construct a construction project schedule by combining the WBS, duration and networking methods.
- 4. Develop a safety protocol for various construction projects depending on the site conditions in alignment with SP 70 2001 manual.
- 5. Analyse the various site conditions on a construction project and select construction equipment best suited for those conditions.

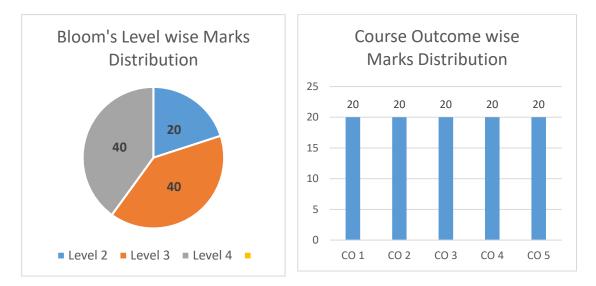
Model Question Paper Total Duration (H:M): 3:00 Course: Construction Project Management Maximum Marks :100

Q.No	Questions	Marks	СО	BL	PI
1	Analyze the given drawing to determine the scope of work and sequence the activities in order of their construction.	20	CO1	L3	2.1.2

Q.No		Questions		Marks	СО	BL	PI
2	villages before the mons preceding officer has as	soon season arrives, as an	f a small concrete bridge between two assistant engineer in the PWD, you el WBS accounting for all the majo pocess.	ir 20	CO2	L3	3.2.1
3	is about to build. The act the planning meeting. An project. Also, determine for the non-critical activity Activity Site Clearance Surveying Excavation Foundation Superstructure Plastering Painting Flooring Clean up	tivities, durations and the inalyze and determine the original day ities. Duration (Weeks) 4 2 4 5 15 4 6 4 2	hercial complex which your companinterdependencies were finalized in earliest duration to execute the earliest duration to execute the earliest duration to execute the earliest duration to execute the s, other than the planned durations Interdependency - Site Clearance Site Clearance, Surveying, Excavation Foundation Superstructure Superstructure, Plastering Plastering, Flooring Plastering, Painting, Flooring.	20	CO3	L3	2.2.3
+	safety practices) for the f	following projects: artment Complex		20	CO4	L3	2.2.3
5	An electrical sub-station work to be completed by i. Clearing of veg ii. Removing of to from the worksi iii. Compacting the iv. Placing of aggre v. Compacting the vi. Excavating for vii. Placing Concret vii. Placing Concret vii. Asphalt of 6 inc ix. Machine contro	is to be built on a 7 acres your company. The project etation on site, which incl p 1 meter soil and haulin ite. e natural ground for 94 % egates to the specified leve placed aggregates for Mo 85 piers of specified diam te in the piers. whes over the aggregate ba l is to be used for excavat	el as mentioned in the drawing. odified Proctor Density of 98 %. eter. use for the entire sub-station. ion and aggregate placement. t two types of construction equipment	is 20	CO5	L4	2.2.3

Course Name: Advanced Project Management

Course Outcomes (CO):


- 1. Assess the importance of monitoring and control phase during the execution of a construction project.
- 2. Combine estimating and scheduling and develop a cost loaded schedule which will combine both cost and time aspects into one cost loaded schedule.
- 3. Develop earned value reports to know the progress of the project at any instant of the project duration.
- 4. Evaluate the various bidding strategies employed in construction.
- 5. Conduct risk analysis to determine the probable risks involved and place appropriate mitigation measures in place.

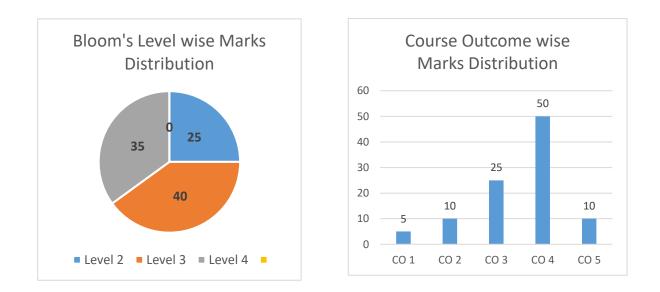
Model Question Paper Total Duration (H:M): 3:00 Course: Advanced Project management Maximum Marks :100

Q.No		Questions	5		Marks	СО	BL	PI
1	The following is the plan The scheduled work days meters. Determine the pl Labor Force Required Back Hoes Operators Dump Trucks Dump Trucks Dump Truck Drivers After 3 days, the followin Amount of work done: 1 for all the 3 days. Determ Comment on the product complete the work in the determine whether additi for the existing crew.	s is 6 days. The pla anned total cost and Total Number 07 07 10 10 200 cubic meters. Thine the cost that w ivity of the crew. Coremaining 3 days.	erated fro The crew as spent for Calculate Analyze	ntity is 3000 Cubic st for this activity. Per Day Rates ₹ 1000/day ₹ 550/day ₹ 600/day ₹ 600/day ₹ 350/day om the site. worked for 8 hours/day for these 3 days. the cost required to the given situation and	20	CO1	L4	2.2.1
2	A typical small house co operations along with the Operation (Activiti	-	20	CO2	L4	13.1.3		
	Survey, design and Layou	t 6	;	10000	20	02	L4	13.1.3
	Construction of foundatio	n 5		26000				

Q.No			Questio	ons			Marks	СО	BL	PI
	Construct	ion of Superstructu	ire	11	80000					
	Roofing			5	34000					
	Fixing do	or and window fram	mes	3	16000					
	Plumbing	and Drainage		4	12000					
	Electric F	itting		4	19000					
	Plastering	7		4	7000					
	Flooring			4	32000					
	Carpentry	v work		2	10000					
	Painting			3	8000					
	The project starts on Monday 16 th November 2018. Assume 5 days-work week. The following data was collected from the job site.									
	Oper	ration		entage plete	Actual Cost (in Rupees)					
	Surve	ey, design and Lay	out	100 %	11600					
	Cons	truction of foundat	ion	100 %	25200					
	Cons	truction of Superst	ructure	80 %	76000	_				
	Roof	ing		25 %	12000					
	m ii. Co Co iii. A	ake. ompile PV (Plan ost) from the data	nned Value), E a provided. of the project (1	EV (Earne	State any assump d Value) and AC .) and create a stat	C (Actual				
3a	report sent be comple	t to you from the eted till activity D	field after 2 m after 2 month	onths. The s. Analyse activity in	Comp 0 100	ned to oss. ntage olete	20	CO3	L3	11.3.1
	3	C	32000	3500						
	4	D	28000	1700	00 729	%				
	5	E	56000	3000	00 469	%				

Q.No				Marks	СО	BL	PI		
	6	F	87000	24000	34%				
	7	G	96000						
	8	Н	68000						
4a	reputed pr tender by you to pre	here is a call for tender for construction of stadium in your city, only few puted private construction companies have been asked to participate in the nder by the governing body, your company is one of them. Your boss asks ou to prepare the necessary document which is required for the tendering work r the construction of stadium.						L2	11.3.1
4b	Discuss th	ne different type	of bidding model	S		08	CO4	L2	1.3.1
5	acres of la project are room, aspl that could	Discuss the different type of bidding models Your company has just won a bid to construct an electrical sub-station over 5 cres of land which is covered with vegetation. The major activities of the roject are site clearance, surveying, subgrade base, piers and bolts, control bom, asphalt base, painting and clean-up. Evaluate the project and list all risks nat could occur on this project. List the mitigation techniques to be placed to ounter the identified risks.				20	CO5	L3	2.1.1

Course Name: Design of RCC Structures


Course Outcomes (CO):

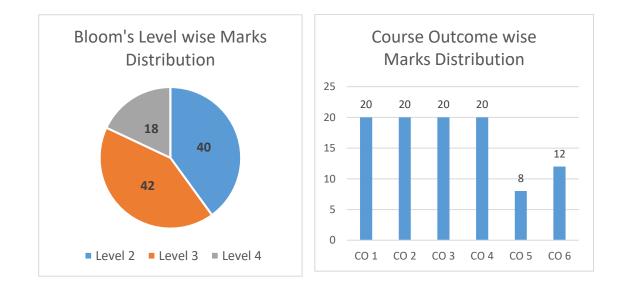
- 1. Assess different design philosophies of R.C.C. structure and relative merits and demerits.
- 2. Analyze the structure for different methods under limit state design philosophy.
- 3. Estimate the moment carrying capacity and serviceability criteria of various structural elements.
- 4. Design the reinforced concrete sections such as beams, slabs, columns, footings and staircase.
- 5. Detail the bar bending scheme of the RCC structural elements.

Model Question Paper Total Duration (H:M):3:00 Course: Design of RCC Structures Maximum Marks :100

Q.No	Questions	Marks	СО	BL	PI
1(a)	What are the different limit states of design? What are the merits of limit state design over other philosophies?	10	2	L2	1.3.1
1(b)	A RC beam 200mm wide and 500mm deep is reinforced with 3nos of 16mm dia bars. Find moment of resistance of beam. Effective span is 5m. If effective cover is 40mm find safe working load as well as super imposed load. Use M25 grade concrete and Fe500 grade steel.	10	3	L3	1.3.1
2(a)	Derive the stress block parameters for compressive force Cu and Tensile force Tu using limit state method of design.	5	1	L2	1.3.1
2(b)	 A singly reinforced rectangular section of breadth 200mm and effective depth 400mm is made up of concrete of M20 grade and steel of Fe500 grade. Find out following Calculate maximum moment of resistance that a given section can offer and also what is corresponding area of steel. Find moment of resistance and area of steel if depth of N.A. is restricted to 0.3d. If c/s is reinforced with 4% of c/s size of beam find X_u for steel to fail and also moment of resistance at that instance. Check whether given c/s can withstand an ultimate B.M. of 100kNm. If not suggest alternate solution. 	15	3	L4	1.3.1
3	A Room is having clear dimensions of $3m \ge 6m$. The superimposed live load on slab is 10 kN/m^2 , at service state. The slab is simply supported on all the four sides on a wall of 300mm thickness. The corners are held down. Decide whether the slab is designed as one way slab or two way	20	4	L3	2.3.1

Q.No	Questions	Marks	CO	BL	PI
	slab giving proper justifications. Design the slab using M-20 grade of concrete and Fe-415 grade of steel. Sketch the reinforcement details.				
4	A rectangular beam of effective span 6m needs to be designed. The superimposed load on the beam is 50kN/m. The c/s size of the beam is restricted to 300mmX600mm by the architect. List out different types of beams that can be provided under these circumstances. Design the beam which gives you optimal solution.	20	4	L4	2.3.1
5(a)	State and explain the basic assumptions made for design of columns under axial compression and uniaxial bending.	10	4	L2	1.3.1
5(b)	Design a rectangular R.C. footing for an R.C. column 230 mm x 450 mm carrying an axial load of 1500 kN. The S.B.C. of the soil is 150 kN/m^2 . Sketch the reinforcement details.	10	5	L3	2.3.1

Course Name: Environmental Engineering (15ECVC204) Course Outcomes (CO):


- 1. Discuss the impact of human activities on environment
- **2.** Predict the population at the end of the design period and estimate the water demand of the city
- **3.** Calculate the BHP of pump to lift the water from the source and convey to the treatment plant
- **4.** Analyze the quality of water and design the treatment units required to meet BIS guidelines.
- 5. Calculate the capacity of storage reservoir required for the distribution of water
- 6. Estimate the quantity of sewage generated for different sewerage systems and design the sewer for different depths of flow to ensure self –cleansing velocity
- 7. Analyze the constituents of concern in domestic waste water and describe the appropriate processes for target pollutants to be removed.
- 8. Design the treatment process to treat the waste water to meet the desired limits
- 9. Explain the process of self-purification of the sources of disposal and determine the degree of treatment of sewage based on source of disposal of waste water

Model Question Paper Total Duration (H:M):3:00 Course: Environmental Engineering Maximum Marks: 100

Q.No		Questions		Marks	СО	BL	PI
1(a)	Predict the population of design demands of the wa follows:	• •				L3	1.1.1
	Census Yea	ar Population					
	1960	31500	-				
	1970	37800	-		~~ .		
	1980	51700		10	CO2		
	1990	57400					
	2000	59200					
	2010	67500					
	Assume that the city is ra	oidly advancing.					
1(b)	Discuss the impact of hur		nment	06	CO1	L2	7.1.1

Q.No	Question	ns	Marks	CO	BL	PI
1 (c)	Discuss the criteria for selection of an in	ndicator organisms	04	CO4	L2	1.2.1
2 (a)	For the water supply of a small town, wa a tube well to an overhead tank. Work o data are given as below. Daily demand of water Hours of pumping Water table below ground level Height of the tank above ground level Loss of head in the pump and rising mai	out the capacity of the pump. The 750 m ³ 8 8 m 14 m	10	CO3	L3	1.3.1
2 (b)	Enumerate the impurities in ground wa account in deciding the potability of a sa exceed the prescribed BIS limits.	ater which should be taken into	10	CO4	L2	1.2.1
3 (a)	Design Clari-flocculation units to treat 1	5 MLD of water.	12	CO4	L3	2.1.2
3(b)	For the water supply of a small rural tow m ³ of water, it is proposed to construct a of draw off is as follows	• •			1.3.1	
	7am8 am 30	0% of day's supply				
	-	5% of day's supply 0% of day's supply	08	CO5	L3	
	The pumping is done at a constant rat Determine the total capacity of service	• • • •				
4(a)	town is 50,000. Design a combined outfall sewer running sewage for a city having catchment area 20 mm/hr all of which is runoff. Projected lakh. Water to the city is supplied from lpcd. The sewer is to be laid at a slope of	of 200 hectare, rainfall intensity ed population of the city is 4 the water works at a rate of 250	8	L4	2.1.2	
4(b)	The following observation was made or	n a 3% dilution of sewage.	6	CO7	L3	

Q.No	Questions	Marks	СО	BL	PI
	DO of aerated water for dilution 3 mg/l				1 1 1
	DO of diluted sample after 5 day incubation 0.8 mg/l				1.1.1
	DO of original sample 0.6 mg/l				
	Calculate BOD, Ultimate BOD and 3 days BOD at 37 0 C.				
	Take k= 0.23/d				
4(c)	Explain the working of a grit chamber with a neat sketch	6	CO7	L2	1.3.1
5(a)	Design ASP to treat settled sewage of 10 MLD having a BOD of 180 mg/l ,it is desired to produce a filter effluent having a BOD 20 mg/l	12	CO8	L4	2.1.2
5(b)	A city discharges 1500l/s of sewage into a stream whose minimum rate of flow is 6000l/s. The 5 day BOD for sewage is 200 mg/l and that of river is 1 mg/l. The DO content of stream is 90 % of the saturation DO. If the minimum DO to be maintained in the stream is 4.5 mg/l, determine the degree of sewage treatment required. Assume K_D = 0.1/day and K_R = 0.3/day.	8	CO9	L3	1.3.1

